Nel 1993 i due scienziati americani pubblicarono risultati inaspettati che descrivevano un nuovo livello di regolazione genica, che si rivelò altamente significativo e conservato nel corso dell'evoluzione
Agli americani Victor Ambros e Gary Ruvkun il premio Nobel per la Medicina o la Fisiologia 2024 “per la scoperta del microRna e del suo ruolo nella regolazione genica post-trascrizionale”. I miRna sono piccole molecole che hanno aperto un nuovo campo nella regolazione dei geni. A dare l'annuncio del premio Nobel per la Medicina 2024 è stato il segretario generale dell'Assemblea dei Nobel, Thomas Perlman. Ambros è nato nel 1953 ad Hanover, nel New Hampshire. Ha conseguito il dottorato di ricerca al Mit (Massachusetts Institute of Technology) nel 1979, dove ha svolto anche ricerche post-dottorato dal 1979 al 1985, quando è diventato ricercatore principale all'università di Harvard. E' stato professore alla Dartmouth Medical School dal 1992 al 2007 e ora è docente di scienze naturali alla University of Massachusetts Medical School. Ruvkun è nato a Berkeley, in California, nel 1952. Ha conseguito il dottorato di ricerca ad Harvard nel 1982. Dal 1982 al 1985 è stato borsista post-dottorato al Mit. E’ diventato ricercatore principale al Massachusetts General Hospital e all’Harvard Medical School nel 1985, dove ora è professore di genetica.
Il premio Nobel di quest'anno - si legge nel comunicato stampa ufficiale - onora due scienziati per la loro scoperta di un principio fondamentale che regola il modo in cui avviene l'attività genica.
Il premio Nobel di quest'anno si concentra dunque sulla scoperta di un meccanismo di regolazione vitale utilizzato nelle cellule per controllare l'attività genica. Le informazioni genetiche fluiscono dal Dna all'Rna messaggero (mRna), tramite un processo chiamato trascrizione, e poi al macchinario cellulare per la produzione di proteine. Lì, gli mRna vengono tradotti in modo che le proteine siano prodotte secondo le istruzioni genetiche memorizzate nel Dna. Dalla metà del XX secolo, le scoperte scientifiche più cruciali hanno spiegato come funzionano questi processi. Processi che consentono che le diverse cellule esprimano set unici di proteine e che le cellule muscolari, intestinali, nervose e così via svolgano le loro funzioni specializzate.
Inoltre, l'attività genica deve essere continuamente messa a punto per adattare le funzioni cellulari alle mutevoli condizioni nei nostri corpi e nell'ambiente. Se la regolazione genica va male, può portare a gravi malattie come cancro, diabete o autoimmunità. Negli anni '60, è stato dimostrato che proteine specializzate, note come fattori di trascrizione, possono legarsi a regioni specifiche del Dna e controllare il flusso di informazioni genetiche determinando quali Rna messaggeri vengono prodotti. Da allora, sono stati identificati migliaia di fattori di trascrizione e per molto tempo si è creduto che i principi fondamentali della regolazione genica fossero stati risolti. Tuttavia, nel 1993, i neo premi Nobel Ambros e Ruvkun hanno pubblicato risultati inaspettati che descrivono un nuovo livello di regolazione genica, che si è rivelato altamente significativo e conservato durante l'evoluzione.
Complice della loro scoperta un piccolo verme, da sempre prezioso per la ricerca, il C. elegans. Verso fine anni '80, Ambros e Ruvkun - borsisti post-dottorato nel laboratorio di un altro Nobel, Robert Horvitz (premiato nel 2002) - puntarono i loro microscopi su questo verme cilindrico lungo 1 millimetro che, nonostante le piccole dimensioni, possiede molti tipi di cellule specializzate presenti anche in animali più grandi e complessi. Ambros e Ruvkun erano interessati ai geni che controllano la tempistica di attivazione di diversi programmi genetici, assicurando che vari tipi di cellule si sviluppino al momento giusto. I loro studi si concentrarono su due ceppi mutanti di vermi, lin-4 e lin-14, che mostravano difetti in questa tempistica di attivazione. Ambros aveva precedentemente dimostrato che il gene lin-4 sembrava essere un regolatore negativo del gene lin-14. Tuttavia, non si sapeva come l'attività di lin-14 venisse bloccata. Con Ruvkun affrontò questi misteri. Ambros analizzò il mutante lin-4 nel suo laboratorio fondato all'università di Harvard. Lì avvenne una scoperta inaspettata: il gene lin-4 produceva una molecola di Rna insolitamente corta che non aveva un codice per la produzione di proteine. Questi risultati suggerirono che questo piccolo Rna di lin-4 era responsabile dell'inibizione di lin-14.
Ma come funzionava questo processo? A mettere l'altro pezzo del puzzle fu Ruvkun. Studiando la regolazione del gene lin-14 nel suo laboratorio al Massachusetts General Hospital e Harvard Medical School, dimostrò che non è la produzione di Rna messaggero da lin-14 a essere inibita da lin-4. La regolazione sembrava verificarsi in una fase successiva del processo di espressione genica, attraverso l'arresto della produzione di proteine. E' confrontando le loro scoperte che i 2 ricercatori hanno avuto l'intuizione. Ulteriori loro esperimenti hanno dunque permesso di dimostrare che il miRna di lin-4 disattivava lin-14 legandosi alle sequenze complementari nel suo mRna, bloccando la produzione della proteina lin-14. Era stato scoperto un nuovo principio di regolazione genica, mediato da un tipo di Rna precedentemente sconosciuto, il microRna appunto. I risultati furono pubblicati nel 1993 in 2 articoli sulla rivista 'Cell', accolti - si ricorda nella nota del Nobel Prize - con un silenzio "quasi assordante" dalla comunità scientifica.
La percezione cambiò nel 2000 quando il gruppo di ricerca di Ruvkun pubblicò la scoperta di un altro microRna, codificato dal gene let-7, altamente conservato e presente in tutto il regno animale. L'articolo suscitò grande interesse e negli anni successivi furono identificati centinaia di diversi microRna. Oggi sappiamo che la regolazione genica da parte dei miRna è universale tra gli organismi multicellulari. Oltre alla mappatura di nuovi microRna, esperimenti condotti da diversi gruppi di ricerca hanno chiarito i meccanismi di come vengono prodotti e consegnati a sequenze bersaglio complementari negli Rna messaggeri regolati. Il legame dei microRna porta all'inibizione della sintesi proteica o alla degradazione degli mRna. Piccola curiosità: un singolo microRna può regolare l'espressione di molti geni diversi e, al contrario, un singolo gene può essere regolato da più microRna, coordinando e perfezionando così intere reti di geni.
I macchinari cellulari per la produzione di miRna funzionali vengono impiegati anche per produrre altre piccole molecole di Rna sia nelle piante che negli animali, ad esempio come mezzo per proteggere le piante dalle infezioni virali. La regolazione genica tramite microRna, rivelata per la prima volta da Ambros e Ruvkun, è in atto da centinaia di milioni di anni. Questo meccanismo ha permesso l'evoluzione di organismi sempre più complessi. Oggi sappiamo dalla ricerca genetica che cellule e tessuti non si sviluppano normalmente senza microRna. Una regolazione anomala tramite miRna può contribuire al cancro e sono state trovate mutazioni nei geni che codificano per microRna negli esseri umani e causano condizioni come la perdita congenita dell'udito, disturbi oculari e scheletrici. Mutazioni in una delle proteine necessarie per la produzione di miRna determinano la sindrome Dicer1, grave malattia rara legata al cancro in vari organi e tessuti. “La scoperta fondamentale di Ambros e Ruvkun nel piccolo verme C. elegans è stata inaspettata - concludono gli esperti dell'Assemblea del Nobel al Karolinska Institutet - e ha rivelato una nuova dimensione nella regolazione genica, essenziale per tutte le forme di vita complesse”.
Il settore giovanile del sindacato ANAAO e le associazioni ALS e GMI, plaudono alle tre importanti implementazioni normative ed economiche contenute negli articoli 59 e 59-bis della legge di bilancio
Sconti, rateizzazioni e anticipi, tra i metodi più utilizzati dagli studi privati per convincere i clienti a pagare. Cresce anche l’adozione di sistemi BNPL
Soddisfatti anche per ritiro emendamento 6.0.15 al Ddl Liste d’attesa sull’abolizione del requisito per accedere a concorsi Ssn
Per quanti andranno in pensione nel 2025 c’è una buona notizia: la rivalutazione del montante contributivo sarà del 3,66%, in deciso aumento rispetto al 2,30% dello scorso anno
La finalità del divieto è di garantire la massima efficienza e funzionalità operativa all'Ssn, evitando gli effetti negativi di un contemporaneo esercizio, da parte del medico dipendente, di attività professionale presso strutture accreditate
Le richieste puntano sull'adeguamento economico e sulla riorganizzazione del lavoro
Con la graduatoria parte la caccia ai 22mila posti
Nursing Up: "Mai così tante. In nessun ospedale agenti dopo le 24"
Commenti